Regularised PCA to denoise and visualise data

نویسندگان

  • Marie Verbanck
  • Julie Josse
  • François Husson
چکیده

Principal component analysis (PCA) is a well-established dimensionality reduction method commonly used to denoise and visualise data. A classical PCA model is the fixed effect model in which data are generated as a fixed structure of low rank corrupted by noise. Under this model, PCA does not provide the best recovery of the underlying signal in terms of mean squared error. Following the same principle as in ridge regression, we suggest a regularised version of PCA that essentially selects a certain number of dimensions and shrinks the corresponding singular values. Each singular value is multiplied by a term which can be seen as the ratio of the signal variance over the total variance of the M. Verbanck Applied mathematics department, Agrocampus Ouest Tel.: +332-23-48-54-91 E-mail: [email protected] J. Josse Applied mathematics department, Agrocampus Ouest Tel.: +332-23-48-58-74 E-mail: [email protected] F. Husson Applied mathematics department, Agrocampus Ouest Tel.: +332-23-48-58-86 E-mail: [email protected] associated dimension. The regularised term is analytically derived using asymptotic results and can also be justified from a Bayesian treatment of the model. Regularised PCA provides promising results in terms of the recovery of the true signal and the graphical outputs in comparison with classical PCA and with a soft thresholding estimation strategy. The distinction between PCA and regularised PCA becomes especially important in the case of very noisy data.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalised Scalable Robust Principal Component Analysis

The robust estimation of the low-dimensional subspace that spans the data from a set of high-dimensional, possibly corrupted by gross errors and outliers observations is fundamental in many computer vision problems. The state-of-the-art robust principal component analysis (PCA) methods adopt convex relaxations of `0 quasi-norm-regularised rank minimisation problems. That is, the nuclear norm an...

متن کامل

Spacecraft Pose Estimation using Principal Component Analysis and a Monocular Camera

The method of Principal Components Analysis (PCA) is widely used in statistical data analysis for engineering and the sciences. It is an effective tool for reducing the dimensionality of datasets while retaining majority of the data information. This paper explores the method of using PCA for spacecraft pose estimation for the purpose of proximity operations, and adapts a novel kernel based PCA...

متن کامل

Package 'scran' Title Methods for Single-cell Rna-seq Data Analysis

buildSNNGraph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 combineVar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 convertTo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 correlatePairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 cyclone . . . ....

متن کامل

Package ‘ scran ’ August 26 , 2017

buildSNNGraph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 combineVar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 convertTo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 correlatePairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 cyclone . . . ....

متن کامل

Heart Rate Variability Classification and Feature Extraction Using Support Vector Machine and PCA: An Overview

In today’s era Heart Rate Variability becomes an important characteristic to determine the condition of heart. That’s why the calculation of HRV and classification to generate rules is necessary. Human Heart Generates the electrical signal. ECG is used to detect the heart beat. ECG signal contains lots of noise. To classify the signals first to decompose the signals using wavelet transform. Man...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Statistics and Computing

دوره 25  شماره 

صفحات  -

تاریخ انتشار 2015